کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1554389 | 998783 | 2011 | 8 صفحه PDF | دانلود رایگان |

Hydrothermally prepared as-grown low-dimensional nano-particles (NPs) have been characterized using UV–vis spectroscopy, Fourier transform infrared (FT-IR) spectroscopy, powder X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, and electron dispersion spectroscopy (EDS). The uniformity of the nano-material was executed by the scanning electron microscopy, where the single phase of the nano-crystalline β-Fe2O3 was characterized using XRD techniques. β-Fe2O3 nanoparticles fabricated glassy carbon electrode (GCE) have improved chloroform-sensing performances in terms of electrical response (I–V technique) for detecting analyte in liquid phase. The analytical performances were investigated, which showed that the better sensitivity, stability, and reproducibility of the sensor improved significantly by using Fe2O3 NPs thin-film on GCE. The calibration plot was linear (R = 0.9785) over the large range of 12.0 μM to 12.0 mM. The sensitivity was calculated as 2.1792 μA cm−2 mM−1 with a detection limit of 4.4 ± 0.10 μM in short response time (10.0 s).
Figure optionsDownload as PowerPoint slideHighlights
► As-grown low-dimensional β-Fe2O3 nanoparticles.
► Chloroform chemical sensor.
► Higher sensitivity.
Journal: Superlattices and Microstructures - Volume 50, Issue 4, October 2011, Pages 369–376