کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1555152 | 1513254 | 2007 | 4 صفحه PDF | دانلود رایگان |

ZnO based magnetic semiconductors (MSs) are prominent candidates for the spintronic devices because of their high Curie temperatures and low conductance mismatches. In this paper the spin-polarized transport in MS/nonmagnetic semiconductor (NMS) p–n junction is investigated. A model is established based on semiconductor drift–diffusion theory and continuity equation. Boundary conditions are obtained from the quasi-chemical potential (QCP) relations at the junction interface. For a ZnO based magnetic p–n junction, we calculate the distributions of carrier/spin density and spin polarization at room temperature. It is demonstrated that by choosing proper parameters, effective spin-polarized injection from ZnO based MS into ZnO can be achieved at room temperature without external spin-polarized injection (ESPI) or large bias.
Journal: Superlattices and Microstructures - Volume 42, Issues 1–6, July–December 2007, Pages 222–225