کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1658916 1008363 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Surface characterisation of DC plasma electrolytic oxidation treated 6082 aluminium alloy: Effect of current density and electrolyte concentration
موضوعات مرتبط
مهندسی و علوم پایه مهندسی مواد فناوری نانو (نانو تکنولوژی)
پیش نمایش صفحه اول مقاله
Surface characterisation of DC plasma electrolytic oxidation treated 6082 aluminium alloy: Effect of current density and electrolyte concentration
چکیده انگلیسی

Plasma electrolytic oxidation (PEO) is a specialised but well-developed process which has found applications in aerospace, oil/gas, textile, chemical, electrical and biomedical sectors. A novel range of coatings having technologically attractive physical and chemical properties (e.g. wear- and corrosion-resistance) can be produced by suitable control of the electrolyte as well as electrical parameters of the PEO process. Oxide ceramic films, 3 to 40 μm thick, were produced on 6082 aluminium alloy by DC PEO using 5 to 20 A/dm2 current density in KOH electrolyte with varied concentration (0.5 to 2.0 g/l). Phase analysis (composition and crystallite size) was carried out using X-ray diffraction and TEM techniques. Residual stresses associated with the crystalline coating phase (α-Al2O3) were evaluated using the X-ray diffraction Sin2ψ method. Nanoindentation studies were conducted to evaluate the hardness and elastic modulus. SEM, SPM and TEM techniques were utilised to study surface as well as cross-sectional morphology and nano features of the PEO coatings. Correlations between internal stress and coating thickness, surface morphology and phase composition are discussed. It was found that, depending on the current density and electrolyte concentration used, internal direct and shear stresses in DC PEO alumina coatings ranged from − 302 ± 19 MPa to − 714 ± 22 MPa and − 25 ± 12 MPa to − 345 ± 27 MPa, respectively. Regimes of PEO treatment favourable for the production of thicker coatings with minimal stress level, dense morphology and relatively high content of α-Al2O3 phase are identified.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Surface and Coatings Technology - Volume 205, Issue 6, 15 December 2010, Pages 1679–1688
نویسندگان
, , , , ,