کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1702853 | 1519398 | 2016 | 17 صفحه PDF | دانلود رایگان |
• Proposed two numerical schemes for solving DPD systems in the overdamped limit.
• Incorporated the physical velocity constraint of the mass centre into the DPD system.
• Proposed a simple spring model for massless suspended particles.
• Investigated the overdamped DPD behaviour in the modelling of fluid-solid systems.
In this paper, a numerical scheme is used to study strongly-overdamped Dissipative Particles Dynamics (DPD) systems for the modelling of fluid-solid systems. In the scheme, the resultant set of algebraic equations for the velocities are directly solved in an iterative manner. Different test problems, e.g., viscometric flows, particulate suspensions and flows past a periodic square array of cylinders, are used to verify the proposed method. In the simulation of particulate suspensions, a new simple model for massless suspended particles is presented. A DPD fluid in the overdamped limit is shown to possess several attractive properties including much faster dynamic response and near-incompressibility.
Journal: Applied Mathematical Modelling - Volume 40, Issues 13–14, July 2016, Pages 6359–6375