کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1702931 1519402 2016 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Behavior of limit cycle bifurcations for a class of quartic Kolmogorov models in a symmetrical vector field
ترجمه فارسی عنوان
رفتار بیوگرافی چرخه محدود برای یک کلاس از مدل های کولموگروف کوارتتی در یک فیلد بردار متقارن
کلمات کلیدی
مدل کلموگروف، نقطه تعادل مثبت، چرخه محدودیت چرخه پایدار
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
چکیده انگلیسی


• We gave four singular point’s property for a class of quartic Kolmogorov models.
• The limit cycle bifurcation behavior of four positive singular point’s is investigated.
• Distribution structure of limit cycles is given via simultaneous Hopf bifurcation.
• This paper showed the Hilbert number of studied quartic Kolmogorov is 8 at least.

In this study, we consider the limit cycle bifurcation problem for a class of quartic Kolmogorov models with five positive singular points, i.e., (1,1), (1,2), (2,1), (1,3), and (3,1), which lie in a symmetrical vector field relative to the line y=xy=x. We classify these singular points. We show that points (1,2) and (2,1) can bifurcate into three small limit cycles by simultaneous Hopf bifurcation, and that points (1,3) and (3,1) can bifurcate into three small limit cycles by simultaneous Hopf bifurcation. In addition, we construct limit cycles for this model and we show that four positive singular points, i.e., (1,1), (1,2), (2,1), and (1,3), can bifurcate into eight limit cycles in total, among which six cycles may be stable. Few previous studies have considered a symmetrical Kolmogorov model with several positive singular points. Our results are good in terms of the Hilbert number for the Kolmogorov model.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 40, Issues 5–6, March 2016, Pages 4094–4108
نویسندگان
, , ,