کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1703137 1519401 2016 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fast diffusion wavelet method for partial differential equations
ترجمه فارسی عنوان
روش موجک انتشار سریع برای معادلات دیفرانسیل با مشتقات جزئی
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
چکیده انگلیسی

A fast diffusion wavelet method for solving partial differential equations (PDEs) is developed. Classes of operators which can be used for the construction of diffusion wavelet include approximation of second order differential operators. The efficiency of the method is that the same diffusion operator is used for the construction of diffusion wavelet as well as for approximation of second order differential operator. As a part of the wavelet method the behavior of compression error with respect to different parameters involved in the construction of diffusion wavelet is tested for two test functions. Furthermore, the diffusion wavelet is used for the compression of operators and hence for the fast and efficient computing of the dyadic powers of the diffusion operator T which are required for solving the PDE. We have considered PDEs with Dirichlet and periodic boundary conditions on one, two, and three dimensional domains. For each test problem, the CPU time taken by the fast diffusion wavelet method is compared with the CPU time taken by the finite difference method. We have also verified the convergence of the proposed method.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 40, Issues 7–8, April 2016, Pages 5000–5025
نویسندگان
, ,