کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1703516 | 1519412 | 2014 | 10 صفحه PDF | دانلود رایگان |
In this paper, a predator–prey model consisting of active and dormant states of predators with impulsive control strategy is established. Using Floquet theories, the small amplitude perturbation technique and the piecewise Lyapunov function method, the conditions of local and global asymptotical orbital stability of the prey-eradication periodic solution are obtained. The boundness and permanence of the impulsive system are proved by the comparison principle. Through numerical simulations, the effects of the impulsive perturbation on the inherent oscillation are investigated, which implies that the impulsive perturbation can lead to period-doubling bifurcation, chaos, and period-halving bifurcation. Moreover, the effects of the impulsive perturbation and hatching rate on the chaos of the system are comparatively studied by numerical simulation. These obtained results can be useful for ecosystem management and for explaining complex phenomena of ecosystems.
Journal: Applied Mathematical Modelling - Volume 38, Issues 9–10, 1 May 2014, Pages 2533–2542