| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 1704054 | 1012397 | 2013 | 6 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												Candidate groups search for K-harmonic means data clustering
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												موضوعات مرتبط
												
													مهندسی و علوم پایه
													سایر رشته های مهندسی
													مکانیک محاسباتی
												
											پیش نمایش صفحه اول مقاله
												
												چکیده انگلیسی
												Clustering is a very popular data analysis and data mining technique. K-means is one of the most popular methods for clustering. Although K-mean is easy to implement and works fast in most situations, it suffers from two major drawbacks, sensitivity to initialization and convergence to local optimum. K-harmonic means clustering has been proposed to overcome the first drawback, sensitivity to initialization. In this paper we propose a new algorithm, candidate groups search (CGS), combining with K-harmonic mean to solve clustering problem. Computational results showed CGS does get better performance with less computational time in clustering, especially for large datasets or the number of centers is big.
ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 37, Issue 24, 15 December 2013, Pages 10123–10128
											Journal: Applied Mathematical Modelling - Volume 37, Issue 24, 15 December 2013, Pages 10123–10128
نویسندگان
												Cheng-Huang Hung, Hua-Min Chiou, Wei-Ning Yang,