کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1704244 1012403 2013 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A new model for automatic normalization of multitemporal satellite images using Artificial Neural Network and mathematical methods
موضوعات مرتبط
مهندسی و علوم پایه سایر رشته های مهندسی مکانیک محاسباتی
پیش نمایش صفحه اول مقاله
A new model for automatic normalization of multitemporal satellite images using Artificial Neural Network and mathematical methods
چکیده انگلیسی

Relative Radiometric Normalization is often required in remote sensing image analyses particularly in the land cover change detection process. Normalization process minimizes the radiometric differences between two images caused by inequalities in the acquisition conditions rather than changes in surface reflectance. A wide range of RRN methods have been developed to adjust linear models. This paper proposes an automated Relative Radiometric Normalization (RRN) method to adjust a non-linear model based on an Artificial Neural Network (ANN) and unchanged pixels. The proposed method includes the following stages: (1) automatic detection of unchanged pixels based on a new idea that uses CVA (Change Vector Análysis) method, PCA (Principal Component Analysis) transformation and K-means clustering technique, (2) evaluation of different architectures of perceptron neural networks to find the best architecture for this specific task and (3) use of the aforementioned network for normalizing the subject image. The method has been implemented on two images taken by the TM sensor. Experimental results confirm the effectiveness of the presented technique in the automatic detection of unchanged pixels and minimizing imaging condition effects (i.e., atmosphere and other effective parameters).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 37, Issue 9, 1 May 2013, Pages 6437–6445
نویسندگان
, , ,