کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1705050 | 1519419 | 2013 | 8 صفحه PDF | دانلود رایگان |

Rough set theory is a useful mathematical tool to deal with vagueness and uncertainty in available information. The results of a rough set approach are usually presented in the form of a set of decision rules derived from a decision table. Because using the original decision table is not the only way to implement a rough set approach, it could be interesting to investigate possible improvement in classification performance by replacing the original table with an alternative table obtained by pairwise comparisons among patterns. In this paper, a decision table based on pairwise comparisons is generated using the preference relation as in the Preference Ranking Organization Methods for Enrichment Evaluations (PROMETHEE) methods, to gauges the intensity of preference for one pattern over another pattern on each criterion before classification. The rough-set-based rule classifier (RSRC) provided by the well-known library for the Rough Set Exploration System (RSES) running under Windows as been successfully used to generate decision rules by using the pairwise-comparisons-based tables. Specifically, parameters related to the preference function on each criterion have been determined using a genetic-algorithm-based approach. Computer simulations involving several real-world data sets have revealed that of the proposed classification method performs well compared to other well-known classification methods and to RSRC using the original tables.
Journal: Applied Mathematical Modelling - Volume 37, Issues 12–13, 1 July 2013, Pages 7330–7337