کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1706235 | 1012454 | 2008 | 9 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
On consistency of recursive least squares identification algorithms for controlled auto-regression models
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
سایر رشته های مهندسی
مکانیک محاسباتی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The recursive least squares (RLS) algorithms is a popular parameter estimation one. Its consistency has received much attention in the identification literature. This paper analyzes convergence of the RLS algorithms for controlled auto-regression models (CAR models), and gives the convergence theorems of the parameter estimation by the RLS algorithms, and derives the conditions that the parameter estimates consistently converge to the true parameters under noise time-varying variance and unbounded condition number. This relaxes the assumptions that the noise variance is constant and that high-order moments are existent. Finally, the proposed algorithms are tested with two example systems, including an experimental water-level system.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Applied Mathematical Modelling - Volume 32, Issue 11, November 2008, Pages 2207–2215
Journal: Applied Mathematical Modelling - Volume 32, Issue 11, November 2008, Pages 2207–2215
نویسندگان
Yongsong Xiao, Feng Ding, Yi Zhou, Ming Li, Jiyang Dai,