کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
1706765 | 1012475 | 2009 | 10 صفحه PDF | دانلود رایگان |

Metallic materials present a complex behavior during heat treatment processes. In a certain temperature range, change of temperature induces a phase transformation of metallic structure, which alters physical properties of the material. Indeed, measurements of specific heat and conductivity show strong temperature-dependence during processes such as quenching of steel. Several mathematical models, as solid mixtures and thermal–mechanical coupling, for problems of heat conduction in metallic materials, have been proposed. In this work, we take a simpler approach without thermal–mechanical coupling of deformation, by considering the nonlinear temperature-dependence of thermal parameters as the sole effect due to those complex behaviors. The above discussion of phase transformation of metallic materials serves only as a motivation for the strong temperature-dependence as material properties. In general, thermal properties of materials do depend on the temperature, and the present formulation of heat conduction problem may be served as a mathematical model when the temperature-dependence of material parameters becomes important. For this mathematical model we present the error estimate using the finite element method for the continuous-time case.
Journal: Applied Mathematical Modelling - Volume 33, Issue 5, May 2009, Pages 2464–2473