کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1774524 1021167 2011 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Morphology, temperature, and eruption dynamics at Pele
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات علوم فضا و نجوم
پیش نمایش صفحه اول مقاله
Morphology, temperature, and eruption dynamics at Pele
چکیده انگلیسی

The Pele region of Io has been the site of vigorous volcanic activity from the time of the first Voyager I observations in 1979 up through the final Galileo ones in 2001. There is high-temperature thermal emission from a visibly dark area that is thought to be a rapidly overturning lava lake, and is also the source of a large sulfur-rich plume. We present a new analysis of Voyager I visible wavelength images, and Galileo Solid State Imager (SSI) and Near Infrared Mapping Spectrometer (NIMS) thermal emission observations which better define the morphology of the region and the intensity of the emission. The observations show remarkable correlations between the locations of the emission and the features seen in the Voyager images, which provide insight into eruption mechanisms and constrain the longevity of the activity. We also analyze an additional wavelength channel of NIMS data (1.87 μm) which paradoxically, because of reduced sensitivity, allows us to estimate temperatures at the peak locations of emission. Measurements of eruption temperatures on Io are crucial because they provide our best clues to the composition of the magma. High color temperatures indicative of ultramafic composition have been reported for the Pillan hot spot and possibly for Pele, although recent work has called into question the requirement for magma temperatures above those expected for ordinary basalts. Our new analysis of the Pele emission near the peak of the hot spot shows color temperatures near the upper end of the basalt range during the I27 and I32 encounters. In order to analyze the observed color temperatures we also present an analytical model for the thermal emission from fire-fountains, which should prove generally useful for analyzing similar data. This is a modification of the lava flow emission model presented in Howell (Howell, R.R. [1997]. Icarus 127, 394–407), adapted to the fire-fountain cooling curves first discussed in Keszthelyi et al. (Keszthelyi, L., Jaeger, W., Milazzo, M., Radebaugh, J., Davies, A.G., Mitchell, K.L. [2007]. Icarus 192, 491–502). When applied to the I32 observations we obtain a fire-fountain mass eruption rate of 5.1 × 105 kg s−1 for the main vent area and 1.4 × 104 kg s−1 for each of two smaller vent regions to the west. These fire-fountain rates suggest a solution to the puzzling lack of extensive lava flows in the Pele region. Much of the erupted lava may be ejected at high speed into the fire-fountains and plumes, creating dispersed pyroclastic deposits rather than flows. We compare gas and silicate mass eruption rates and discuss briefly the dynamics of this ejection model and the observational evidence.


► Combined Voyager, and Galileo NIMS and SSI images reveal volcanic morphology at Pele.
► An analytical fire-fountain thermal emission model is developed.
► The fire-fountain model provides eruption temperatures and effusion rates for Pele.
► Maximum eruption temperatures at Pele approach 1700 K.
► Much of the magma erupted at Pele may be launched as pyroclastics into the plume.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Icarus - Volume 213, Issue 2, June 2011, Pages 593–607
نویسندگان
, ,