کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1791423 1524468 2012 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Study and optimization of gas flow and temperature distribution in a Czochralski configuration
موضوعات مرتبط
مهندسی و علوم پایه فیزیک و نجوم فیزیک ماده چگال
پیش نمایش صفحه اول مقاله
Study and optimization of gas flow and temperature distribution in a Czochralski configuration
چکیده انگلیسی

The Czochralski (Cz) method has virtually dominated the entire production of bulk single crystals with high productivity. Since the Cz-grown crystals are cylindrical, axisymmetric hot zone arrangement is required for an ideally high-quality crystal growth. However, due to three-dimensional effects the flow pattern and temperature field are inevitably non-axisymmetric. The grown crystal suffers from many defects, among which macro-cracks and micro-dislocation are mainly related to inhomogeneous temperature distribution during the growth and cooling processes. The task of the paper is to investigate gas partition and temperature distribution in a Cz configuration, and to optimize the furnace design for the reduction of the three-dimensional effects. The general design is found to be unfavorable to obtain the desired temperature conditions. Several different types of the furnace designs, modified at the top part of the side insulation, are proposed for a comparative analysis. The optimized one is chosen for further study, and the results display the excellence of the proposed design in suppression of three-dimensional effects to achieve relatively axisymmetric flow pattern and temperature distribution for the possible minimization of thermal stress related crystal defects.


► We model temperature field and gas flow in a Czochralski crystal growth furnace.
► Three-dimensional effects of gas partition and temperature field are studied.
► Optimized furnace design is proposed to suppress the three-dimensional effects.
► Experimental observation validates the distribution of temperature field.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Crystal Growth - Volume 361, 15 December 2012, Pages 114–120
نویسندگان
, , ,