کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
184234 | 459571 | 2015 | 8 صفحه PDF | دانلود رایگان |

• Graphene and MgO nanobelts are deposited on tantalum wires to form biosensors.
• Ascorbic acid, dopamine and uric acid are determined with the biosensors.
• The biosensors show high electrocatalytic activity for oxidation of these species.
• The biosensors show high selectivity and good sensitivity.
ABSTRACTA promising electrochemical biosensor for simultaneous detection of ascorbic acid (AA), dopamine (DA) and uric acid (UA) was fabricated by electrochemical deposition of MgO nanobelts on a graphene-modified tantalum wire (denoted as MgO/Gr/Ta) electrode. The MgO nanobelts and graphene were verified by scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Electrochemical performances of the electrodes were characterized by electrochemical impedance spectroscopy (EIS), cyclic voltammetry (CV) and differential pulse voltammetry (DPV). The CV results show that AA, DA and UA could be detected simultaneously using MgO/Gr/Ta electrode with peak-to-peak separation of 300 mV, 147 mV and 447 mV for AA-DA, DA-UA and AA-UA, respectively. In the threefold co-existence system, the linear calibration plots for AA, DA and UA were obtained over the concentration range of 5.0–350 μM, 0.1–7 μM and 1–70 μM with detection limits of 0.03 μM, 0.15 μM and 0.12 μM, respectively. The modified electrode shows excellent selectivity, good sensitivity and good stability, making it attractive as a sensor for simultaneous detection of AA, DA and UA in biological fluids.
Figure optionsDownload as PowerPoint slide
Journal: Electrochimica Acta - Volume 168, 20 June 2015, Pages 191–198