کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
188420 459659 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fabrication and characterization of a porous gas-evolving anode constituted of lead dioxide microfibers electroformed on a carbon cloth substrate
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Fabrication and characterization of a porous gas-evolving anode constituted of lead dioxide microfibers electroformed on a carbon cloth substrate
چکیده انگلیسی

Lead dioxide microfibers (MF-PbO2) were electroformed on fibers of a carbon cloth substrate in order to obtain a porous gas-evolving anode (PGEA). A solid polymer electrolyte cell was fabricated using perforated current collectors, composed of PGEA pressed against the solid polymer electrolyte using a stainless steel fine mesh as the cathode. Ex situ characterization carried out through XRD and SEM techniques provided information about the structural and morphological properties of the MF-PbO2, respectively. An electrochemical characterization study was carried out through analysis of the quasi-stationary polarization curves obtained for the oxygen evolution reaction (OER). Analysis of SEM images showed that the MF-PbO2 surface is rough and uniformly distributed along fibers of the carbon cloth substrate. The formation of MF-PbO2 occurred preferentially onto carbon fibers located near the surface of the substrate (outer fibers). The XRD study revealed a high degree of crystallinity of the beta phase (β-PbO2), with crystals characterized by a size of 24 nm. Analysis of the Tafel plot permitted us to propose the primary water discharge as the rate-determining step for the OER. The apparent enthalpy and entropy of activation and the apparent kinetic rate constant were evaluated for the OER on MF-PbO2. The endurance test revealed that MF-PbO2 are resistant to wear during the intense oxygen evolution.


► Lead dioxide microfibers electroformed onto fibers of a carbon cloth substrate.
► No previous studies reporting the use of lead dioxide microfibers in an SPE cell.
► The resulting porous gas-evolving anode is resistant to the erosion and/or corrosion processes during the intense gas evolution.
► The anode composed of lead dioxide microfibers presents a very high overpotential for the oxygen evolution reaction.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 70, 30 May 2012, Pages 365–374
نویسندگان
, ,