کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1904843 1534671 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Hepatocyte-specific Dyrk1a gene transfer rescues plasma apolipoprotein A-I levels and aortic Akt/GSK3 pathways in hyperhomocysteinemic mice
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی سالمندی
پیش نمایش صفحه اول مقاله
Hepatocyte-specific Dyrk1a gene transfer rescues plasma apolipoprotein A-I levels and aortic Akt/GSK3 pathways in hyperhomocysteinemic mice
چکیده انگلیسی

Hyperhomocysteinemia, characterized by high plasma homocysteine levels, is recognized as an independent risk factor for cardiovascular diseases. The increased synthesis of homocysteine, a product of methionine metabolism involving B vitamins, and its slower intracellular utilization cause increased flux into the blood. Plasma homocysteine level is an important reflection of hepatic methionine metabolism and the rate of processes modified by B vitamins as well as different enzyme activity. Lowering homocysteine might offer therapeutic benefits. However, approximately 50% of hyperhomocysteinemic patients due to cystathionine-beta-synthase deficiency are biochemically responsive to pharmacological doses of B vitamins. Therefore, effective treatments to reduce homocysteine levels are needed, and gene therapy could provide a novel approach. We recently showed that hepatic expression of DYRK1A, a serine/threonine kinase, is negatively correlated with plasma homocysteine levels in cystathionine-beta-synthase deficient mice, a mouse model of hyperhomocysteinemia. Therefore, Dyrk1a is a good candidate for gene therapy to normalize homocysteine levels. We then used an adenoviral construct designed to restrict expression of DYRK1A to hepatocytes, and found decreased plasma homocysteine levels after hepatocyte-specific Dyrk1a gene transfer in hyperhomocysteinemic mice. The elevation of pyridoxal phosphate was consistent with the increase in cystathionine-beta-synthase activity. Commensurate with the decreased plasma homocysteine levels, targeted hepatic expression of DYRK1A resulted in elevated plasma paraoxonase-1 activity and apolipoprotein A-I levels, and rescued the Akt/GSK3 signaling pathways in aorta of mice, which can prevent homocysteine-induced endothelial dysfunction. These results demonstrate that hepatocyte-restricted Dyrk1a gene transfer can offer a useful therapeutic targets for the development of new selective homocysteine lowering therapy.


► Plasma homocysteine level is decreased after hepatocyte-specific Dyrk1a gene transfer.
► The elevation of pyridoxal phosphate is consistent with the increase in CBS activity.
► The effect on aortic Akt/GSK3 pathways is consistent with the plasma apo A-I level.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease - Volume 1832, Issue 6, June 2013, Pages 718–728
نویسندگان
, , , , , , , , , , , , ,