کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
191081 459714 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Electrochemical sensor for sulfite determination based on a nanostructured copper-salen film modified electrode
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Electrochemical sensor for sulfite determination based on a nanostructured copper-salen film modified electrode
چکیده انگلیسی

The electrochemical preparation described herein involved the electrocatalytic oxidation of sulfite on a platinum electrode modified with nanostructured copper salen (salen = N,N′-ethylenebis(salicylideneiminato)) polymer films. The complex was prepared and electropolymerized at a platinum electrode in a 0.1 mol L−1 solution of tetrabutylammonium perchlorate in acetonitrile by cyclic voltammetry between 0 and 1.4 V vs. SCE. After cycling the modified electrode in a 0.50 mol L−1 KCl solution, the estimated surface concentration was found to be equal to 2.2 × 10−9 mol cm−2. This is a typical behavior of an electrode surface immobilized with a redox couple that can usually be considered as a reversible single-electron reduction/oxidation of the copper(II)/copper(III) couple. The potential peaks of the modified electrode in the electrolyte solution (aqueous) containing the different anions increase with the decrease of the ionic radius, demonstrating that the counter-ions influence the voltammetric behavior of the sensor. The potential peak was found to be linearly dependent upon the ratio [ionic charge]/[ionic radius]. The oxidation of the sulfite anion was performed at the platinum electrode at +0.9 V vs. SCE. However, a significant decrease in the overpotential (+0.45 V) was obtained while using the sensor, which minimized the effect of oxidizable interferences. A plot of the anodic current vs. the sulfite concentration for chronoamperometry (potential fixed = +0.45 V) at the sensor was linear in the 4.0 × 10−6 to 6.9 × 10−5 mol L−1 concentration range and the concentration limit was 1.2 × 10−6 mol L−1. The reaction order with respect to sulfite was determined by the slope of the logarithm of the current vs. the logarithm of the sulfite concentration.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 54, Issue 19, 30 July 2009, Pages 4552–4558
نویسندگان
, ,