کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
192291 459738 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Stability-enhanced indium hexacyanoferrate electrodes: Morphological characterization, in situ EQCM analysis in nonaqueous electrolytes and application to a WO3 electrochromic device
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی مهندسی شیمی (عمومی)
پیش نمایش صفحه اول مقاله
Stability-enhanced indium hexacyanoferrate electrodes: Morphological characterization, in situ EQCM analysis in nonaqueous electrolytes and application to a WO3 electrochromic device
چکیده انگلیسی

This paper presents a promising transparent counterelectrode system for a WO3 electrochromic device (ECD) on the basis of a stability-enhanced indium hexacyanoferrate (InHCF) electrode and a NaClO4/propylene carbonate (PC) electrolyte. Through SEM characterization it was found that clusters of granular InHCF nanoparticles (ca. 80–140 nm) were deposited on ITO substrates in HCl and KCl-stabilized plating solutions, and uniform micrometer thick films with high charge capacity could be obtained. From in situ electrochemical quartz crystal microbalance study, it was discovered that Na+ would enter or move out from the InHCF film in the “desolvated” form during the redox process in a PC electrolyte. Besides, NaClO4/PC resulted in higher electrochemical activity and reversibility than LiClO4/PC. With these discoveries, a durable WO3-InHCF ECD featuring blue-to-colorless electrochromism was fabricated successfully. The device remained 73.6 and 88.7% of its initial ΔT values at 600 and 800 nm after 40,000 rapid and successive coloring/bleaching cycles, respectively. Moreover, the cycling-induced loss of electrochromic performance almost completely restored after 1-month rest and kept unchanged for another month. Thus, the applicability of this nonaqueous InHCF counterelectrode system to ECDs was verified.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Electrochimica Acta - Volume 53, Issue 16, 30 June 2008, Pages 5306–5314
نویسندگان
, ,