کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
193943 | 459780 | 2009 | 7 صفحه PDF | دانلود رایگان |

Ni-free 23Cr-1N stainless steel was examined as bipolar plates for proton exchange membrane fuel cells. Corrosion resistance of the 23Cr-1N stainless steel was better relative to 22Cr stainless steel in the simulated cathodic environments. As confirmed by X-ray photoelectron spectroscopy, the polarized 22Cr and 23Cr-1N stainless steels at pH 2.3 presented predominantly chromium oxide in the outer passive layers. At pH 4.3, the passive layer of the polarized 22Cr stainless steel changed to iron oxides dominant. Interestingly, on the other hand, the polarized 23Cr-1N stainless steel preserved chromium oxide rich outer passive layer, which provides good corrosion resistance. As a result, although the initial cell voltage was slightly lower (∼40 mV), the 23Cr-1N stainless steel bipolar plates employing cell showed better cell voltage stability up to 1000 h, compared with the 22Cr stainless steel employing cell. The operation voltage became further higher through a surface modification of the 23Cr-1N stainless steel with TiN nanoparticles. It seems that the corrosion resistive Ni-free 23Cr-1N is possible to apply for bipolar plates of proton exchange membrane fuel cells.
Journal: Electrochimica Acta - Volume 54, Issue 3, 1 January 2009, Pages 1127–1133