کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1944222 1053191 2014 8 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Solution structure of the TatB component of the twin-arginine translocation system
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Solution structure of the TatB component of the twin-arginine translocation system
چکیده انگلیسی


• TatB adopts an extended ‘L-shape’ structure comprising of four helices.
• The TMH (α1) and APH (α2) adopt a relatively rigid orientation.
• The helices α3 and α4 are solvent exposed and exhibit high flexibility.

The twin-arginine protein transport (Tat) system translocates fully folded proteins across lipid membranes. In Escherichia coli, the Tat system comprises three essential components: TatA, TatB and TatC. The protein translocation process is proposed to initiate by signal peptide recognition and substrate binding to the TatBC complex. Upon formation of the TatBC–substrate protein complex, the TatA subunits are recruited and form the protein translocation pore. Experimental evidences suggest that TatB forms a tight complex with TatC at 1:1 molar ratio and the TatBC complex contains multiple copies of both proteins. Cross-linking experiments demonstrate that TatB functions in tetrameric units and interacts with both TatC and substrate proteins. However, structural information of the TatB protein is still lacking, and its functional mechanism remains elusive. Herein, we report the solution structure of TatB in DPC micelles determined by Nuclear Magnetic Resonance (NMR) spectroscopy. Overall, the structure shows an extended ‘L-shape’ conformation comprising four helices: a transmembrane helix (TMH) α1, an amphipathic helix (APH) α2, and two solvent exposed helices α3 and α4. The packing of TMH and APH is relatively rigid, whereas helices α3 and α4 display notably higher mobility. The observed floppiness of helices α3 and α4 allows TatB to sample a large conformational space, thus providing high structural plasticity to interact with substrate proteins of different sizes and shapes.

Figure optionsDownload high-quality image (108 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Biochimica et Biophysica Acta (BBA) - Biomembranes - Volume 1838, Issue 7, July 2014, Pages 1881–1888
نویسندگان
, , , ,