کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
1995117 1541300 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Calpain- and talin-dependent control of microvascular pericyte contractility and cellular stiffness
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شیمی
پیش نمایش صفحه اول مقاله
Calpain- and talin-dependent control of microvascular pericyte contractility and cellular stiffness
چکیده انگلیسی

Pericytes surround capillary endothelial cells and exert contractile forces modulating microvascular tone and endothelial growth. We previously described pericyte contractile phenotype to be Rho GTPase- and α-smooth muscle actin (αSMA)-dependent. However, mechanisms mediating adhesion-dependent shape changes and contractile force transduction remain largely equivocal. We now report that the neutral cysteine protease, calpain, modulates pericyte contractility and cellular stiffness via talin, an integrin-binding and F-actin associating protein. Digital imaging and quantitative analyses of living cells reveal significant perturbations in contractile force transduction detected via deformation of silicone substrata, as well as perturbations of mechanical stiffness in cellular contractile subdomains quantified via atomic force microscope (AFM)-enabled nanoindentation. Pericytes overexpressing GFP-tagged talin show significantly enhanced contractility (~ two-fold), which is mitigated when either the calpain-cleavage resistant mutant talin L432G or vinculin are expressed. Moreover, the cell-penetrating, calpain-specific inhibitor termed CALPASTAT reverses talin-enhanced, but not Rho GTP-dependent, contractility. Interestingly, our analysis revealed that CALPASTAT, but not its inactive mutant, alters contractile cell-driven substrata deformations while increasing mechanical stiffness of subcellular contractile regions of these pericytes. Altogether, our results reveal that calpain-dependent cleavage of talin modulates cell contractile dynamics, which in pericytes may prove instrumental in controlling normal capillary function or microvascular pathophysiology.

Graphical AbstractAtomic Force Microscopy (AFM), biochemical and molecular analyses reveal that retinal pericyte mechanical stiffness is cytoskeletal- and calpain-dependent. Insights derived from these quantitative in vitro studies lend important new insights into the pericyte-dependent and mechano-chemical signaling networks that control the ‘angiogenic switch’ during developmental or pathological angiogenesis.Figure optionsDownload as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Microvascular Research - Volume 80, Issue 3, December 2010, Pages 339–348
نویسندگان
, , , ,