کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
20218 | 43163 | 2015 | 8 صفحه PDF | دانلود رایگان |

Skeletal muscle regeneration requires migration, proliferation and fusion of myoblasts to form multinucleated myotubes. In our previous study, we showed that insulin-like growth factor (IGF)-I gene delivery stimulates the proliferation and differentiation of mouse myoblast C2C12 cells and promotes the contractile force generated by tissue-engineered skeletal muscles. The aim of this study was to investigate the effects of the extracellular matrix on IGF-I gene-engineered C2C12 cells in vitro. Retroviral vectors for doxycycline (Dox)-inducible expression of the IGF-I gene were transduced into C2C12 cells. When cultured on a type IV collagen-coated surface, we observed significant increases in the migration speed and number of IGF-I gene-engineered C2C12 cells with Dox addition, designated as C2C12/IGF (+) cells. Co-culture of C2C12/IGF (+) cells and parental C2C12 cells, which had been cultured in differentiation medium for 3 days, greatly enhanced myotube formation. Moreover, type IV collagen supplementation promoted the fusion of C2C12/IGF (+) cells with differentiated C2C12 cells and increased the number of myotubes with striations. Myotubes formed by C2C12/IGF (+) cells cultured on type IV collagen showed a dynamic contractile activity in response to electrical pulse stimulation. These findings indicate that type IV collagen promotes skeletal muscle regeneration mediated by IGF-I-expressing myoblasts, which may have important clinical implications in the design of myoblast-based therapies.
Journal: Journal of Bioscience and Bioengineering - Volume 119, Issue 5, May 2015, Pages 596–603