کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2040792 1073129 2016 12 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Intestinal Dysbiosis Contributes to the Delayed Gastrointestinal Transit in High-Fat Diet Fed Mice
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی بیوشیمی، ژنتیک و زیست شناسی مولکولی (عمومی)
پیش نمایش صفحه اول مقاله
Intestinal Dysbiosis Contributes to the Delayed Gastrointestinal Transit in High-Fat Diet Fed Mice
چکیده انگلیسی

Background & AimsHigh-fat diet (HFD) feeding is associated with gastrointestinal motility disorders. We recently reported delayed colonic motility in mice fed a HFD for 11 weeks. In this study, we investigated the contributing role of gut microbiota in HFD-induced gut dysmotility.MethodsMale C57BL/6 mice were fed a HFD (60% kcal fat) or a regular/control diet (RD) (18% kcal fat) for 13 weeks. Serum and fecal endotoxin levels were measured, and relative amounts of specific gut bacteria in the feces were assessed by real-time polymerase chain reaction. Intestinal transit was measured by fluorescent-labeled marker and a bead expulsion test. Enteric neurons were assessed by immunostaining. Oligofructose (OFS) supplementation with RD or HFD for 5 weeks also was studied. In vitro studies were performed using primary enteric neurons and an enteric neuronal cell line.ResultsHFD-fed mice had reduced numbers of enteric nitrergic neurons and showed delayed gastrointestinal transit compared with RD-fed mice. HFD-fed mice had higher fecal Firmicutes and Escherichia coli and lower Bacteroidetes compared with RD-fed mice. OFS supplementation protected against enteric nitrergic neuron loss in HFD-fed mice, and improved intestinal transit time. OFS supplementation resulted in a reduction in fecal Firmicutes and Escherichia coli and serum endotoxin levels. In vitro, palmitate activation of TLR4 induced enteric neuronal apoptosis in a Phospho–c-Jun N-terminal kinase–dependent pathway. This apoptosis was prevented by a c-Jun N-terminal kinase inhibitor and in neurons from TLR4-/- mice.ConclusionsTogether our data suggest that intestinal dysbiosis in HFD-fed mice contribute to the delayed intestinal motility by inducing a TLR4-dependent neuronal loss. Manipulation of gut microbiota with OFS improved intestinal motility in HFD mice.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: CMGH Cellular and Molecular Gastroenterology and Hepatology - Volume 2, Issue 3, May 2016, Pages 328–339
نویسندگان
, , , , , , , , ,