کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
20536 | 43179 | 2014 | 8 صفحه PDF | دانلود رایگان |
To elucidate the bacterial community dynamics in a full-scale wastewater treatment plant (WWTP) and the relatedness among bacterial communities in the influent, effluent and sludge, the structure and metabolic ability of the bacterial community throughout a full-scale WWTP employing a conventional activated sludge process was investigated during a period of 10 months. The bacterial community structure was analyzed by terminal-restriction fragment length polymorphism targeting eubacterial 16S rRNA genes, while a Biolog assay was applied to assess the metabolic ability of the activated sludge. Influent bacterial community structure was generally stable. In contrast, the bacterial community structure in the effluent was similar to that in the influent in some cases, while in other cases it was unique and differed greatly from that in the influent and sludge. These results suggest that temporal variations of the effluent bacterial community may be useful to predict the wastewater treatment performance and settleability of activated sludge. The bacterial community structure in the sludge was relatively stable and was rarely impacted by the influent populations. Biolog assay also revealed that activated sludge maintained a remarkably similar metabolic potential of organic compounds over time due to functional redundancy, in which the minor populations played a significant role.
Journal: Journal of Bioscience and Bioengineering - Volume 118, Issue 1, July 2014, Pages 64–71