کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2056315 1075816 2012 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhanced oxidative stress in the ethylene-insensitive (ein3-1) mutant of Arabidopsis thaliana exposed to salt stress
موضوعات مرتبط
علوم زیستی و بیوفناوری علوم کشاورزی و بیولوژیک علوم زراعت و اصلاح نباتات
پیش نمایش صفحه اول مقاله
Enhanced oxidative stress in the ethylene-insensitive (ein3-1) mutant of Arabidopsis thaliana exposed to salt stress
چکیده انگلیسی
To better understand the role of ethylene signaling in plant stress tolerance, salt-induced changes in gene expression levels of ethylene biosynthesis, perception and signaling genes were measured in Arabidopsis thaliana plants exposed to 15 days of salinity. Among the genes analyzed, EIN3 showed the highest expression level increase under salt stress, suggesting a key role for this ethylene-signaling component in response to salt stress. Therefore, we analyzed the salt stress response over 15 days (by adding 100 mM NaCl to the nutrient solution) in the ein3-1 mutant compared to the wild-type (Col-0) in terms of growth, oxidative stress markers (lipid peroxidation, foliar pigments and low-molecular-weight antioxidants) and levels of growth- and stress-related phytohormones (including cytokinins, auxins, gibberellins, abscisic acid, jasmonic acid and salicylic acid). The ein3-1 mutant grew similarly to wild-type plants both under control and salt stress conditions, which was associated with a differential time course evolution in the levels of the cytokinins zeatin and zeatin riboside, and the auxin indole-3-acetic acid between the ein3-1 mutant and the wild-type. Despite showing no signs of physiological deterioration under salt stress (in terms of rosette biomass, leaf water and pigment contents, and PSII efficiency) the ein3-1 mutant showed enhanced lipid peroxidation under salt stress, as indicated by 2.4-fold increase in both malondialdehyde and jasmonic acid contents compared to the wild-type. We conclude that, at moderate doses of salinity, partial insensitivity to ethylene might be compensated by changes in endogenous levels of other phytohormones and lipid peroxidation-derived signals in the ein3-1 mutant exposed to salt stress, but at the same time, this mutant shows higher oxidative stress under salinity than the wild-type.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Plant Physiology - Volume 169, Issue 4, 1 March 2012, Pages 360-368
نویسندگان
, , , , , ,