کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2484638 | 1114321 | 2015 | 10 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Three-Dimensional Quantitative Structure-Activity Relationship Analysis for Human Pregnane X Receptor for the Prediction of CYP3A4 Induction in Human Hepatocytes: Structure-Based Comparative Molecular Field Analysis
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
علوم پزشکی و سلامت
داروسازی، سم شناسی و علوم دارویی
اکتشاف دارویی
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The pregnane X receptor [PXR (NR1I2)] induces the expression of xenobiotic metabolic genes and transporter genes. In this study, we aimed to establish a computational method for quantifying the enzyme-inducing potencies of different compounds via their ability to activate PXR, for the application in drug discovery and development. To achieve this purpose, we developed a three-dimensional quantitative structure-activity relationship (3D-QSAR) model using comparative molecular field analysis (CoMFA) for predicting enzyme-inducing potencies, based on computer-ligand docking to multiple PXR protein structures sampled from the trajectory of a molecular dynamics simulation. Molecular mechanics-generalized born/surface area scores representing the ligand-protein-binding free energies were calculated for each ligand. As a result, the predicted enzyme-inducing potencies for compounds generated by the CoMFA model were in good agreement with the experimental values. Finally, we concluded that this 3D-QSAR model has the potential to predict the enzyme-inducing potencies of novel compounds with high precision and therefore has valuable applications in the early stages of the drug discovery process.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Pharmaceutical Sciences - Volume 104, Issue 1, January 2015, Pages 223-232
Journal: Journal of Pharmaceutical Sciences - Volume 104, Issue 1, January 2015, Pages 223-232
نویسندگان
Koichi Handa, Izumi Nakagome, Noriyuki Yamaotsu, Hiroaki Gouda, Shuichi Hirono,