کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2502856 1557405 2012 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Enhanced stability of horseradish peroxidase encapsulated in acetalated dextran microparticles stored outside cold chain conditions
موضوعات مرتبط
علوم پزشکی و سلامت داروسازی، سم شناسی و علوم دارویی علوم دارویی
پیش نمایش صفحه اول مقاله
Enhanced stability of horseradish peroxidase encapsulated in acetalated dextran microparticles stored outside cold chain conditions
چکیده انگلیسی

Micro- and nanoparticles have been shown to improve the efficacy of safer protein-based (subunit) vaccines. Here, we evaluate a method of improving the vaccine stability outside cold chain conditions by encapsulation of a model enzyme, horseradish peroxidase (HRP), in an acid-sensitive, tunable biodegradable polymer, acetalated dextran (Ac-DEX). Vaccines that are stable outside the cold chain would be desirable for use in developing nations. Ac-DEX particles encapsulating HRP were prepared using two different methods, probe sonication and homogenization. These particles were stored under different storage conditions (−20 °C, 4 °C, 25 °C or 45 °C) for a period of 3 months. On different days, the particles were characterized for various physical and chemical measurements. At all conditions, Ac-DEX particles remained spherical in nature, as compared to PLGA particles that fused together starting at day 3 at 45 °C. Furthermore, our results indicated that encapsulation of HRP in Ac-DEX reduces its storage temperature dependence and enhances its stability outside cold chain conditions. Homogenized particles performed better than probe sonicated particles and retained 70% of the enzyme's initial activity as compared to free HRP that retained only 40% of the initial activity after 3 months of storage at 25 °C or 45 °C. Additionally, HRP activity was more stable when encapsulated in Ac-DEX, and the variance in enzyme activity between the different storage temperatures was not observed for either particle preparation. This suggests that storage at a constant temperature is not required with vaccines encapsulated in Ac-DEX particles. Overall, our results suggest that an Ac-DEX based micro-/nanoparticles system has wide applications as vaccines and drug delivery carriers, including those in developing nations.

Figure optionsDownload high-quality image (290 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Pharmaceutics - Volume 431, Issues 1–2, 15 July 2012, Pages 101–110
نویسندگان
, , , , , , ,