کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2504841 1557474 2009 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Injectable in situ forming depot systems: PEG-DAE as novel solvent for improved PLGA storage stability
موضوعات مرتبط
علوم پزشکی و سلامت داروسازی، سم شناسی و علوم دارویی علوم دارویی
پیش نمایش صفحه اول مقاله
Injectable in situ forming depot systems: PEG-DAE as novel solvent for improved PLGA storage stability
چکیده انگلیسی

Injectable in situ forming depots (ISFD) that contain a peptide or a protein within a polymeric solution comprise an attractive, but challenging application system. Beyond chemical compatibility, local tolerability and acute toxicity, an important factor for an ISFD is its storage stability as a liquid. In this study, poly(d,l-lactide-co-glycolide) (PLGA) degradation in the presence of poly(ethyleneglycol) (PEG) as biocompatible solvent was investigated as a function of storage temperature and water content. The PLGA molecular weight (Mw) was determined by gel permeation chromatography (GPC), and monitored by NMR during degradation.Rapid PLGA degradation of 75% at 25 °C storage temperature was shown to be the result of a transesterification using conventional PEG as solvent. A significant improvement with only 3% Mw loss was obtained by capping the PEG hydroxy- with an alkyl- endgroup to have poly(ethyleneglycol) dialkylether (PEG-DAE). The formation of PEG-PLGA block co-polymers was confirmed by NMR, only for PEG300. Reaction rate constants were used to compare PLGA degradation dissolved in conventional and alkylated PEGs. The degradation kinetics in PEG-DAE were almost completely insensitive to 1% additional water in the solution. The transesterification of the hydroxy endgroups of PEG with PLGA was the major degradation mechanism, even under hydrous conditions. The use of PEG-DAE for injectable polymeric solutions, showed PLGA stability under the chosen conditions for at least 2 months. Based on the results obtained here, PEG-DAE appears to be a promising excipient for PLGA-based, parenteral ISFD.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: International Journal of Pharmaceutics - Volume 371, Issues 1–2, 17 April 2009, Pages 33–39
نویسندگان
, , , ,