کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2512499 | 1118358 | 2013 | 8 صفحه PDF | دانلود رایگان |

Zinc protoporphyrin (ZnPP), a known inhibitor of heme oxygenase-1 (HO-1), has been reported to have anticancer activity in both in vitro and in vivo model systems. While the mechanisms of ZnPP's anticancer activity remain to be elucidated, it is generally believed that ZnPP suppresses tumor growth through inhibition of HO-1 activity. We examined this hypothesis by altering cellular levels of HO-1 in human ovarian (A2780) and prostate cancer (DU145) cells and found that ZnPP inhibits cancer cell viability through an HO-1-independent mechanism. Neither over-expression nor knockdown of HO-1 significantly alters ZnPP's cytotoxicity in human cancer cells, indicating that HO-1 does not mediate ZnPP's inhibitory effect on cancer cell growth. Consistent with these observations, tin protoporphyrin (SnPP), a well-established HO-1 inhibitor, was found to be much less cytotoxic than ZnPP, and docosahexaenoic acid (DHA), an HO-1 inducer, enhanced ZnPP's cytotoxicity. In an effort to define the mechanisms of ZnPP-induced cytotoxicity, we found that ZnPP but not SnPP, diminished β-catenin expression through proteasome degradation and potently suppressed β-catenin-mediated signaling in our model systems. Thus, ZnPP-induced cytotoxicity is independent of HO-1 expression in cancer cells and the Wnt/β-catenin pathway is potentially involved in ZnPP's anticancer activity.
Figure optionsDownload as PowerPoint slide
Journal: Biochemical Pharmacology - Volume 85, Issue 11, 1 June 2013, Pages 1611–1618