کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2551153 | 1124702 | 2014 | 8 صفحه PDF | دانلود رایگان |
AimsBoth advanced glycation end products (AGEs) and endoplasmic reticulum (ER) stress play important roles in the development of various diseases. This study aimed to clarify the consequence of AGE-induced ER stress and its underlying mechanisms in human umbilical venous endothelial cells (HUVECs).Main methodsAGE-induced ER stress was assessed by the increased expression and activation of the ER stress marker proteins GRP78, IRE1α and JNK, which were detected using Western blot. NF-κB translocation was revealed using Western blot and immunofluorescent staining in IRE1α-knockdown HUVECs. The mechanism of AGE-induced ER stress was also explored by inhibiting the effect of reactive oxygen species (ROS) using NADPH oxidase 4 (Nox4) siRNA and the antioxidant reduced glutathione (GSH). The cellular ROS level was measured using flow cytometry.Key findingsAGEs time- and dose-dependently enhanced the expression of GRP78 and increased the phosphorylation of IRE1α and its downstream signal JNK in HUVECs. siRNA-induced IRE1α down-regulation suppressed AGE-induced NF-κB p65 nuclear translocation. Inhibiting the ROS production using Nox4 siRNA or antagonizing ROS using GSH reduced cellular ROS level and attenuated AGE-induced GRP78 expression and IRE1α and JNK activation.SignificanceThis study confirms that AGE-induced ER stress in HUVECs focuses on the ER stress-enhanced inflammatory response through JNK and NF-κB activation. It further reveals the involvement of ROS in the AGE-induced ER stress mechanism.
Figure optionsDownload high-quality image (125 K)Download as PowerPoint slide
Journal: Life Sciences - Volume 110, Issue 1, 6 August 2014, Pages 44–51