کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2552515 1560764 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Luteolin suppresses inflammation-associated gene expression by blocking NF-κB and AP-1 activation pathway in mouse alveolar macrophages
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی کاردیولوژی و پزشکی قلب و عروق
پیش نمایش صفحه اول مقاله
Luteolin suppresses inflammation-associated gene expression by blocking NF-κB and AP-1 activation pathway in mouse alveolar macrophages
چکیده انگلیسی

Luteolin, a plant flavonoid, has potent anti-inflammatory properties both in vitro and in vivo. However, the molecular mechanism of luteolin-mediated immune modulation has not been fully understood. In this study, we examined the effects of luteolin on the production of nitric oxide (NO) and prostaglandin E2 (PGE2), as well as the expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), tumor necrosis factor-alpha (TNF-α), and interleukin-6 (IL-6) in mouse alveolar macrophage MH-S and peripheral macrophage RAW 264.7 cells. Luteolin dose-dependently inhibited the expression and production of these inflammatory genes and mediators in macrophages stimulated with lipopolysaccharide (LPS). Semi-quantitative reverse-transcription polymerase chain reaction (RT-PCR) assay further confirmed the suppression of LPS-induced TNF- α, IL-6, iNOS and COX-2 gene expression by luteolin at a transcriptional level. Luteolin also reduced the DNA binding activity of nuclear factor-kappa B (NF-κB) in LPS-activated macrophages. Moreover, luteolin blocked the degradation of IκB-α and nuclear translocation of NF-κB p65 subunit. In addition, luteolin significantly inhibited the LPS-induced DNA binding activity of activating protein-1 (AP-1). We also found that luteolin attenuated the LPS-mediated protein kinase B (Akt) and IKK phosphorylation, as well as reactive oxygen species (ROS) production. In sum, these data suggest that, by blocking NF-κB and AP-1 activation, luteolin acts to suppress the LPS-elicited inflammatory events in mouse alveolar macrophages, and this effect was mediated, at least in part, by inhibiting the generation of reactive oxygen species. Our observations suggest a possible therapeutic application of this agent for treating inflammatory disorders in lung.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Life Sciences - Volume 81, Issues 23–24, 30 November 2007, Pages 1602–1614
نویسندگان
, , , ,