کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
2602748 | 1133797 | 2010 | 9 صفحه PDF | دانلود رایگان |

Talc particles, the basic ingredient in different kinds of talc-based cosmetic and pharmaceutical products, pose a health risk to pulmonary and ovarian systems due to domestic and occupational exposures. Two types of talc nanoparticles depending on the source of geographical origin – indigenous- and commercial talc nanoparticles were assessed for their potential in vitro toxicity on A549 cells; along with indigenous conventionally used microtalc particles. Cell viability, determined through live/dead staining and 3-(4,5-dimethyl thiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, decreased as a function of concentration, origin and size of particles. Both varieties of talc nanoparticles differentially induced lipid peroxidation (LPO), which was correlated with the pattern of lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) generation, and glutathione (GSH) depletion. Relatively higher cytotoxicity of indigenous nanotalc could be attributed to its higher content of iron as compared to commercial nanotalc. The known scavenger of ROS, l-ascorbic acid significantly inhibited LPO induction due to talc particles. Data suggest that nanotalc toxicity on A549 cells was mediated through oxidative stress, wherein role of iron-mediated LPO was much pronounced in differential cytotoxicity.
Journal: Toxicology in Vitro - Volume 24, Issue 4, June 2010, Pages 1139–1147