کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
267890 504418 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A neural network based closed-form solution for the distortional buckling of elliptical tubes
ترجمه فارسی عنوان
یک شبکه عصبی مبتنی بر فرم بسته شده برای خم شدن اشکال لوله های بیضوی است
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات مهندسی ژئوتکنیک و زمین شناسی مهندسی
چکیده انگلیسی

Following the Eurocode 3 philosophy, it is expected that the design of elliptical hollow section (EHS) tubes will be based on the slenderness concept, which requires the calculation of the EHS critical stress. The critical stress of an EHS tube under compression may be associated with local buckling, distortional buckling or flexural buckling. The complexity in deriving analytical expressions for distortional critical stress from classical shell theories, led us to apply Artificial Neural Networks (ANN). This paper presents closed-form expressions to calculate the distortional critical stress and half-wave length of EHS tubes under compression, using ANN. Almost 400 EHS geometries are used and based solely on three parameters: the outer EHS dimensions (A and B) and its thickness (t). Two architectures are shown to be successful. They are tested for several statistical parameters and proven to be very well behaved. Finally, some simple illustrative examples are shown and final remarks are drawn concerning the accuracy of the closed-formed formulas.

Figure optionsDownload as PowerPoint slideHighlights
► EHS tubes under compression may buckle in either local or distortional modes.
► Analytical formulas exist for local buckling of EHS tubes but they are missing for distortional buckling of EHS tubes, due to inherent complexity of distortional mechanics.
► Artificial Neural Networks (ANN) are used to develop closed-form expressions for the calculation of the distortional critical stress and half-wave length of EHS tubes under compression.
► They are tested for several statistical parameters and proven to be very well behaved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Engineering Structures - Volume 33, Issue 6, June 2011, Pages 2015–2024
نویسندگان
, ,