کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
2780236 1153294 2010 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Osteoarthritic cartilage chondrocytes alter subchondral bone osteoblast differentiation via MAPK signalling pathway involving ERK1/2
موضوعات مرتبط
علوم زیستی و بیوفناوری بیوشیمی، ژنتیک و زیست شناسی مولکولی زیست شناسی تکاملی
پیش نمایش صفحه اول مقاله
Osteoarthritic cartilage chondrocytes alter subchondral bone osteoblast differentiation via MAPK signalling pathway involving ERK1/2
چکیده انگلیسی

Osteoarthritic subchondral bone is characterized by abnormal bone density and enhanced production of bone turnover markers, an indication of osteoblast dysfunction. Several studies have proposed that pathological changes in articular cartilage influence the subchondral bone changes, which are typical of the progression of osteoarthritis; however, direct evidence of this has yet to be reported. The aim of the present study was to investigate what effects articular cartilage cells, isolated from normal and osteoarthritic joints, may have on the subchondral bone osteoblast phenotype, and also the potential involvement of the mitogen activated protein kinase (MAPK) signalling pathway during this process. Our results suggest that chondrocytes isolated from a normal joint inhibited osteoblast differentiation, whereas chondrocytes isolated from an osteoarthritic joint enhanced osteoblast differentiation, both via a direct and indirect cell interaction mechanisms. Furthermore, the interaction of subchondral bone osteoblasts with osteoarthritic chondrocyte conditioned media appeared to significantly activate ERK1/2 phosphorylation. On the other hand, conditioned media from normal articular chondrocytes did not affect ERK1/2 phosphorylation. Inhibition of the MAPK–ERK1/2 pathways reversed the phenotype changes of subchondral bone osteoblast, which would otherwise be induced by the conditioned media from osteoarthritic chondrocytes. In conclusion, our findings provide evidence that osteoarthritic chondrocytes affect subchondral bone osteoblast metabolism via an ERK1/2 dependent pathway.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Bone - Volume 46, Issue 1, January 2010, Pages 226–235
نویسندگان
, , , , , ,