کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3069344 1580646 2015 6 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A functional correlate of severity in alternating hemiplegia of childhood
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی عصب شناسی
پیش نمایش صفحه اول مقاله
A functional correlate of severity in alternating hemiplegia of childhood
چکیده انگلیسی


• Na+/K+ATPase forward cycling is reduced in alternating hemiplegia of childhood.
• The function of Na+/K+ATPase is further diminished by negative dominance.
• Loss of Na+/K+ATPase proton transport correlates with severe disease phenotype.

ObjectiveMutations in ATP1A3, the gene that encodes the α3 subunit of the Na+/K+ ATPase, are the primary cause of alternating hemiplegia of childhood (AHC). Correlations between different mutations and AHC severity were recently reported, with E815K identified in severe and D801N and G947R in milder cases. This study aims to explore the molecular pathological mechanisms in AHC and to identify functional correlates for mutations associated with different levels of disease severity.MethodsHuman wild type ATP1A3, and E815K, D801N and G947R mutants were expressed in Xenopus laevis oocytes and Na+/K+ ATPase function measured. Structural homology models of the human α3 subunit containing AHC mutations were created.ResultsThe AHC mutations examined all showed similar levels of reduction in forward cycling. Wild type forward cycling was reduced by coexpression with any mutant, indicating dominant negative interactions. Proton transport was measured and found to be selectively impaired only in E815K. Homology modeling showed that D801 and G947 lie within or near known cation binding sites while E815 is more distal. Despite its effect on proton transport, E815K was also distant from the proposed proton transport route.InterpretationLoss of forward cycling and dominant negativity are common and likely necessary pathomechanisms for AHC. In addition, loss of proton transport correlated with severity of AHC. D801N and G947R are likely to directly disrupt normal Na+/K+ binding while E815K may disrupt forward cycling and proton transport via allosteric mechanisms yet to be elucidated.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neurobiology of Disease - Volume 77, May 2015, Pages 88–93
نویسندگان
, , , , , , ,