کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
312720 534246 2008 7 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks
موضوعات مرتبط
مهندسی و علوم پایه علوم زمین و سیارات مهندسی ژئوتکنیک و زمین شناسی مهندسی
پیش نمایش صفحه اول مقاله
Prediction of geological hazardous zones in front of a tunnel face using TSP-203 and artificial neural networks
چکیده انگلیسی

This research aims at improving the methods of prediction of hazardous geotechnical structures in the front of a tunnel face. We propose and showcase our methodology using a case study on a water supply system in Cheshmeh Roozieh, Iran. Geotechnical investigations had previously reported three measurements of the newly established method of TSP-203 (Tunnel Seismic Prediction) along 684 m of the 3200 m long tunnel up to a depth of 600 m. We use the results of TSP-203 in a trained artificial neural network (ANN) to estimate the unknown nonlinear relationships between TSP-203 results and those obtained by the methods of Rock Mass Rating classification (RMR – treated here as real values). Our results show that an appropriately trained neural network can reliably predict the weak geological zones in front of a tunnel face accurately.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Tunnelling and Underground Space Technology - Volume 23, Issue 6, November 2008, Pages 711–717
نویسندگان
, , , , ,