کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
31684 | 44829 | 2010 | 7 صفحه PDF | دانلود رایگان |

The biocatalytic reduction of d-xylose to xylitol requires separation of the substrate from l-arabinose, another major component of hemicellulosic hydrolysate. This step is necessitated by the innate promiscuity of xylose reductases, which can efficiently reduce l-arabinose to l-arabinitol, an unwanted byproduct. Unfortunately, due to the epimeric nature of d-xylose and l-arabinose, separation can be difficult, leading to high production costs. To overcome this issue, we engineered an E. coli strain to efficiently produce xylitol from d-xylose with minimal production of l-arabinitol byproduct. By combining this strain with a previously engineered xylose reductase mutant, we were able to eliminate l-arabinitol formation and produce xylitol to near 100% purity from an equiweight mixture of d-xylose, l-arabinose, and d-glucose.
Journal: Metabolic Engineering - Volume 12, Issue 5, September 2010, Pages 462–468