کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
3328760 | 1212344 | 2014 | 16 صفحه PDF | دانلود رایگان |
Disordered stem cell epigenetics and apoptosis-regulating mechanisms contribute essentially to the pathogenesis of myelodysplastic syndromes (MDS) and may trigger disease-progression to secondary acute myeloid leukemia (AML).Expression of apoptosis-mediators FAS (CD95) and DAPK1 the latter being also known for its association with autophagy are upregulated in neoplastic cells in patients with low-risk MDS and epigenetically silenced and downregulated in high-risk MDS and AML as confirmed by a study 50 MDS and 30 AMLs complementing this review. 5-Azacytidine (AZA) and 5-aza-2′deoxycytidine (DAC), promoted FAS and DAPK1 gene demethylation and their (re)expression as well as apoptosis in leukemic cell lines (HL-60, KG1) which can be reversed by siRNA against FAS. Thus, promoter-demethylation of FAS and DAPK1 represents a critical mechanism of drug-induced apoptosis in neoplastic cells in MDS and AML which underscores the clinical implication of epigenetically active therapies.
Journal: Critical Reviews in Oncology/Hematology - Volume 90, Issue 1, April 2014, Pages 1–16