کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
3352934 1216809 2015 10 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Interactive Big Data Resource to Elucidate Human Immune Pathways and Diseases
ترجمه فارسی عنوان
منابع داده تعاملی بزرگ برای تشخیص مسیرهای ایمنی انسان و بیماری
موضوعات مرتبط
علوم زیستی و بیوفناوری ایمنی شناسی و میکروب شناسی ایمونولوژی
چکیده انگلیسی


• Interactive web-accessible immunology resource leverages 38,088 experiments
• Powerful computational methods generate big-data-driven hypotheses for immunology
• Predicts new immune pathway interactions, mechanisms, and disease-associated genes
• Flexible, user-friendly platform addresses diverse immunological research questions

SummaryMany functionally important interactions between genes and proteins involved in immunological diseases and processes are unknown. The exponential growth in public high-throughput data offers an opportunity to expand this knowledge. To unlock human-immunology-relevant insight contained in the global biomedical research effort, including all public high-throughput datasets, we performed immunological-pathway-focused Bayesian integration of a comprehensive, heterogeneous compendium comprising 38,088 genome-scale experiments. The distillation of this knowledge into immunological networks of functional relationships between molecular entities (ImmuNet), and tools to mine this resource, are accessible to the public at http://immunet.princeton.edu. The predictive capacity of ImmuNet, established by rigorous statistical validation, is easily accessed by experimentalists to generate data-driven hypotheses. We demonstrate the power of this approach through the identification of unique host-virus interaction responses, and we show how ImmuNet complements genetic studies by predicting disease-associated genes. ImmuNet should be widely beneficial for investigating the mechanisms of the human immune system and immunological diseases.

Graphical AbstractFigure optionsDownload high-quality image (218 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: - Volume 43, Issue 3, 15 September 2015, Pages 605–614
نویسندگان
, , , , , , , , , , , ,