کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
392509 664774 2013 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Iris recognition based on bidimensional empirical mode decomposition and fractal dimension
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Iris recognition based on bidimensional empirical mode decomposition and fractal dimension
چکیده انگلیسی

As the demand for information security increases, more attention is being paid to biometrics-based, automated personal identification. One of the most promising current biometric techniques is based on the human iris. This paper attempts to detect shape information from the iris by analyzing local intensity variations of an iris image. The methodology involves extraction of iris features using bidimensional empirical mode decomposition (BEMD) and fractal dimension. After the preprocessing procedure, the normalized effective iris image is decomposed into 2D intrinsic mode function (IMF) components at different spatial frequencies by bidimensional empirical mode decomposition. Then the texture features of each intrinsic mode function image are obtained via the differential box-counting method. To evaluate the efficacy of the proposed approach, three different similarity measures used in recognition are adopted. The experimental results using the CASIA and ICE iris databases show that the schema presented achieves promising results for iris recognition.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 221, 1 February 2013, Pages 439–451
نویسندگان
, , , , ,