کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
393107 665571 2013 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Particle swarm optimization based on intermediate disturbance strategy algorithm and its application in multi-threshold image segmentation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر هوش مصنوعی
پیش نمایش صفحه اول مقاله
Particle swarm optimization based on intermediate disturbance strategy algorithm and its application in multi-threshold image segmentation
چکیده انگلیسی

Particle swarm optimization (PSO) algorithm simulates social behavior among individuals (or particles) “flying” through multidimensional search space. For enhancing the local search ability of PSO and guiding the search, a region that had most number of the particles was defined and analyzed in detail. Inspired by the ecological behavior, we presented a PSO algorithm with intermediate disturbance searching strategy (IDPSO), which enhances the global search ability of particles and increases their convergence rates. The experimental results on comparing the IDPSO to ten known PSO variants on 16 benchmark problems demonstrated the effectiveness of the proposed algorithm. Furthermore, we applied the IDPSO algorithm to multilevel image segmentation problem for shortening the computational time. Experimental results of the new algorithm on a variety of images showed that it can effectively segment an image faster.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Information Sciences - Volume 250, 20 November 2013, Pages 82–112
نویسندگان
, , , ,