کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4224193 1609630 2015 5 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Evaluation of k-Means and fuzzy C-means segmentation on MR images of brain
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی رادیولوژی و تصویربرداری
پیش نمایش صفحه اول مقاله
Evaluation of k-Means and fuzzy C-means segmentation on MR images of brain
چکیده انگلیسی

This paper does the qualitative comparison of Fuzzy C-means (FCM) and k-Means segmentation, with histogram guided initialization, on tumor edema complex MR images. The accuracy of any segmentation scheme depends on its ability to distinguish different tissue classes, separately. Hence, there is a serious pre-requisite to evaluate this ability before employing the segmentation scheme on medical images. This paper evaluates the ability of FCM and k-Means to segment Gray Matter (GM), White Matter (WM), Cerebro-Spinal Fluid (CSF), Necrotic Focus of Glioblastoma Multiforme (GBM) and the perifocal vasogenic edema from pre-processed T1 contrast axial plane MR images of tumor edema complex. The experiment reveals that FCM identifies the vasogenic edema and the white matter as a single tissue class and similarly gray matter and necrotic focus, also. k-Means is able to characterize these regions comparatively better than FCM. FCM identifies only three tissue classes whereas; k-Means identifies all the six classes. The experimental evaluation of k-Means and FCM, with histogram guided initialization is performed in Matlab®.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: The Egyptian Journal of Radiology and Nuclear Medicine - Volume 46, Issue 2, June 2015, Pages 475–479
نویسندگان
, ,