کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4227469 1609814 2010 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Diffusion tensor magnetic resonance imaging of glial brain tumors
موضوعات مرتبط
علوم پزشکی و سلامت پزشکی و دندانپزشکی رادیولوژی و تصویربرداری
پیش نمایش صفحه اول مقاله
Diffusion tensor magnetic resonance imaging of glial brain tumors
چکیده انگلیسی

AimTo evaluate the author's experience with the use of diffusion tensor magnetic resonance imaging (DTI) on patients with glial tumors.MethodsA retrospective evaluation of a group of 24 patients with glial tumors was performed. There were eight patients with Grade II, eight patients with Grade III and eight patients with Grade IV tumors with a histologically proven diagnosis. All the patients underwent routine imaging including T2 weighted images, multidirectional diffusion weighted imaging (measured in 60 non-collinear directions) and T1 weighted non-enhanced and contrast enhanced images. The imaging sequence and evaluation software were produced by Massachusetts General Hospital Corporation (Boston, MA, USA). Fractional anisotropy (FA) maps were calculated in all patients. The white matter FA changes were assessed within the tumorous tissue, on the tumorous borderline and in the normally appearing white matter adjacent to the tumor. A three-dimensional model of the white matter tract was created to demonstrate the space relationship of the tumor and the capsula interna or corpus callosum in each case using the following fiber tracing parameters: FA step 0.25 and a tensor declination angle of 45 gr. An additional assessment of the tumorous tissue enhancement was performed.ResultsA uniform homogenous structure with sharp demargination of the Grade II tumors and the wide rim of the intermedial FA in all Grade III tumors respectively, were found during the evaluation of the FA maps. In Grade IV tumors a variable demargination was noted on the FA maps. The sensitivity and specificity for the discrimination of low- and high-grade glial tumors using FA maps was revealed to be 81% and 87% respectively. If the evaluation of the contrast enhancement was combined with the evaluation of the FA maps, both sensitivity and specificity were 100%.ConclusionAlthough the evaluation of the fractional anisotropy maps is not sufficient for glioma grading, the combination of the contrast enhancement pattern and fractional anisotropy maps evaluation improves the possibility of distinguishing low- and high-grade glial tumors. Three-dimensional models of the white matter fibers in the corpus callosum and the internal capsule may be used in the presurgical planning.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: European Journal of Radiology - Volume 74, Issue 3, June 2010, Pages 428–436
نویسندگان
, , , , , , ,