کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
430854 688203 2015 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Unit disk cover problem in 2D
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
Unit disk cover problem in 2D
چکیده انگلیسی

In this paper we consider the discrete unit disk cover problem and the rectangular region cover problem as follows:(i) Given a set PP of points and a set DD of unit disks in the plane such that ∪d∈Dd∪d∈Dd covers all the points in PP, select minimum cardinality subset D⁎⊆DD⁎⊆D such that each point in PP is covered by at least one disk in D⁎D⁎.(ii) Given a rectangular region RR and a set DD of unit disks in the plane such that R⊆∪d∈DdR⊆∪d∈Dd, select minimum cardinality subset D⁎⁎⊆DD⁎⁎⊆D such that each point of a given rectangular region RR is covered by at least one disk in D⁎⁎D⁎⁎.For the first problem, we propose a (9+ϵ)(9+ϵ)-approximation algorithm in O(m3(1+6ϵ)nlog⁡n) time for 0<ϵ≤60<ϵ≤6. The approximation factor of previous best known practical algorithm was 15 (Fraser and López-Ortiz (2012) [12]). For the second problem, we propose (i) a (9+ϵ)(9+ϵ)-approximation algorithm in O(m5+18ϵlog⁡m) time for 0<ϵ≤60<ϵ≤6, and (ii) a 2.25-approximation algorithm in reduce radius setup, improving previous 4-approximation result in the same setup (Funke et al. (2007) [11]).Our solution of the discrete unit disk cover problem is based on a polynomial time approximation scheme (PTAS) for the subproblem line separable discrete unit disk cover  , where all the points in PP are on one side of a line and covered by the union of the disks centered on the other side of that line.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Discrete Algorithms - Volume 33, July 2015, Pages 193–201
نویسندگان
, , ,