کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
430983 688239 2007 13 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the minimum load coloring problem
موضوعات مرتبط
مهندسی و علوم پایه مهندسی کامپیوتر نظریه محاسباتی و ریاضیات
پیش نمایش صفحه اول مقاله
On the minimum load coloring problem
چکیده انگلیسی

Given a graph G=(V,E)G=(V,E) with n vertices, m edges and maximum vertex degree Δ, the load distribution   of a coloring φ:V→{red, blue} is a pair dφ=(rφ,bφ)dφ=(rφ,bφ), where rφrφ is the number of edges with at least one end-vertex colored red and bφbφ is the number of edges with at least one end-vertex colored blue. Our aim is to find a coloring φ such that the (maximum) load  , lφ:=1m⋅max{rφ,bφ}, is minimized. This problems arises in Wavelength Division Multiplexing (WDM), the technology currently in use for building optical communication networks. After proving that the general problem is NP  -hard we give a polynomial time algorithm for optimal colorings of trees and show that the optimal load is at most 1/2+(Δ/m)log2n1/2+(Δ/m)log2n. For graphs with genus g>0g>0, we show that a coloring with load OPT(1+o(1))OPT(1+o(1)) can be computed in O(n+glogn)O(n+glogn)-time, if the maximum degree satisfies Δ=o(m2ng) and an embedding is given. In the general situation we show that a coloring with load at most 34+O(Δ/m) can be found by analyzing a random coloring with Chebychev's inequality. This bound describes the “typical” situation: in the random graph model G(n,m)G(n,m) we prove that for almost all graphs, the optimal load is at least 34−n/m. Finally, we state some conjectures on how our results generalize to k  -colorings for k>2k>2.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Discrete Algorithms - Volume 5, Issue 3, September 2007, Pages 533–545
نویسندگان
, , , , ,