کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4340575 1295803 2008 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
BDNF-exercise interactions in the recovery of symmetrical stepping after a cervical hemisection in rats
موضوعات مرتبط
علوم زیستی و بیوفناوری علم عصب شناسی علوم اعصاب (عمومی)
پیش نمایش صفحه اول مقاله
BDNF-exercise interactions in the recovery of symmetrical stepping after a cervical hemisection in rats
چکیده انگلیسی
Clinical evidence indicates that motor training facilitates functional recovery after a spinal cord injury (SCI). Brain-derived neurotrophic factor (BDNF) is a powerful synaptic facilitator and likely plays a key role in motor and sensory functions. Spinal cord hemisection decreases the levels of BDNF below the injury site, and exercise can counteract this decrease [Ying Z, Roy RR, Edgerton VR, Gomez-Pinilla F (2005) Exercise restores levels of neurotrophins and synaptic plasticity following spinal cord injury. Exp Neurol 193:411-419]. It is not clear, however, whether the exercise-induced increases in BDNF play a role in mediating the recovery of locomotion after a SCI. We performed a lateral cervical (∼C4) hemisection in adult rats. Seven days after hemisection, the BDNF inhibitor trkB IgG was injected into the cervical spinal cord below the lesion (∼C5-C6). Half of the rats were exposed to voluntary running wheels for 14 days. Locomotor ability was assessed by determining the symmetry between the contralateral (unaffected) vs. the ipsilateral (affected) forelimb at the most optimum treadmill speed for each rat. Sedentary and exercised rats with BDNF inhibition showed a higher level of asymmetry during the treadmill locomotion test than rats not treated with the BDNF inhibitor. In hemisected rats, exercise normalized the levels of molecules important for synaptic function, such as cyclic AMP response element binding protein (CREB) and synapsin I, in the ipsilateral cervical enlargement, whereas the BDNF blocker lessened these exercise-associated effects. The results indicate that BDNF levels play an important role in shaping the synaptic plasticity and in defining the level of recovery of locomotor performance after a SCI.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Neuroscience - Volume 155, Issue 4, 9 September 2008, Pages 1070-1078
نویسندگان
, , , , , ,