کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
437 42 2014 9 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Control of in vivo mineral bone cement degradation
موضوعات مرتبط
مهندسی و علوم پایه مهندسی شیمی بیو مهندسی (مهندسی زیستی)
پیش نمایش صفحه اول مقاله
Control of in vivo mineral bone cement degradation
چکیده انگلیسی

The current study aimed to prevent the formation of hydroxyapatite reprecipitates in brushite-forming biocements by minimizing the availability of free Ca2+ ions in the cement matrix. This was achieved by both maximizing the degree of cement setting to avoid unreacted, calcium-rich cement raw materials which can deliver Ca2+ directly to the cement matrix after dissolution, and by a reduction in porosity to reduce Ca2+ diffusion into the set cement matrix. In addition, a biocement based on the formation of the magnesium phosphate mineral struvite (MgNH4PO4·6H2O) was tested, which should prevent the formation of low-solubility hydroxyapatite reprecipitates due to the high magnesium content. Different porosity levels were fabricated by altering the powder-to-liquid ratio at which the cements were mixed and the materials were implanted into mechanically unloaded femoral defects in sheep for up to 10 months. While the higher-porosity brushite cement quantitatively transformed into crystalline octacalcium phosphate after 10 months, slowing down cement resorption, a lower-porosity brushite cement modification was found to be chemically stable with the absence of reprecipitate formation and minor cement resorption from the implant surface. In contrast, struvite-forming cements were much more degradable due to the absence of mineral reprecipitates and a nearly quantitative cement degradation was found after 10 months of implantation.

Figure optionsDownload high-quality image (218 K)Download as PowerPoint slide

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Acta Biomaterialia - Volume 10, Issue 7, July 2014, Pages 3279–3287
نویسندگان
, , , ,