کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4408277 | 1618835 | 2015 | 7 صفحه PDF | دانلود رایگان |

• Pure culture of C. violaceum shows highest cyanide production and gold recovery.
• pH decreases at higher pulp densities due to toxicity of ESM on bacterial growth.
• As pulp density increases, gold and copper bioleaching efficiency decreases.
• Spent medium leaching shows higher gold recovery than two-step bioleaching.
• Higher pH of spent medium increases cyanide ion availability for gold complexation.
Rapid technological advancement and relatively short life time of electronic goods have resulted in an alarming growth rate of electronic waste which often contains significant quantities of toxic and precious metals. Compared to conventional recovery methods, bioleaching is an environmentally friendly process for metal extraction. Gold was bioleached from electronic scrap materials (ESM) via gold–cyanide complexation using cyanide produced from pure and mixed cultures of cyanogenic bacteria Chromobacterium violaceum, Pseudomonas aeruginosa and Pseudomonas fluorescens. As ESM was toxic to the bacteria, a two-step bioleaching approach was adopted where the solid waste was added to the bacterial culture after it has reached maximum growth and cyanide production during early stationary phase. Pure culture of C. violaceum showed the highest cyanide production, yielding maximum gold recovery of 11.3% at 0.5% w/v pulp density of ESM in two-step bioleaching. At the same pulp density of ESM, spent medium bioleaching using bacterial cell-free metabolites achieved gold recovery of 18%. Recovery increased to 30% when the pH of the spent medium was increased to shift the equilibrium in favor of cyanide ions production. It is demonstrated for the first time that pH modification of spent medium further improved metal solubilization and yielded higher metal recovery (compared to two-step bioleaching).
Journal: Chemosphere - Volume 136, October 2015, Pages 232–238