کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4409562 | 1307490 | 2013 | 8 صفحه PDF | دانلود رایگان |

Glutathione is one of the major endogenous antioxidants produced by cells. In plants, glutathione is crucial for both abiotic and biotic stress resistance, and also involved in the detoxification of xenobiotics in many organisms. However, as in vivo evidences of glutathione function are still lacking so far, its roles in plants are still poorly understood. In this study, we investigated the changes of thiols, glutathione homeostasis and transcripts of genes potentially involved in chlorothalonil (CHT) metabolism in tomato (Solanum lycopersicum L.). Two genes (GSH1, GSH2) encoding γ-glutamylcysteine synthetase and glutathione synthetase, respectively, and a gene for glutathione reductase (GR1) involved in glutathione regeneration were silenced by virus induced gene silencing (VIGS) approach. Silencing of GSH1, GSH2 and GR1 decreased glutathione contents and the ratio of reduced glutathione (GSH) to oxidized glutathione (GSSG), but increased CHT residues in plant tissues. The GSH1 and GR1 silenced plants showed the lowest GSH level and ratio of GSH/GSSG, respectively. Transcripts of P450, GST and ABC transporter genes as well as glutathione S-transferase (GST) activity were induced after CHT treatment. However, the increases of these transcripts were compromised in GSH1, GSH2 and GR1 silenced plants. This study indicates that glutathione not only serves as a substrate for CHT conjugation, but is also involved in regulation of transcripts of gene in pesticide metabolism via controlling redox homeostasis.
► Glutathione is required for detoxification of chlorothelonil (CHT) in tomato in vivo.
► Silencing of GSH1, GSH2 and GR1 all resulted in decreased glutathione synthesis.
► P450, GST & ABC transcripts were downregulated by GSH1, GSH2 & GR1 gene silencing.
► Gene silencing decreased GST activity but increased CHT residue in plant.
► Glutathione biosynthesis and regeneration are required for CHT metabolism in vivo.
Journal: Chemosphere - Volume 90, Issue 10, March 2013, Pages 2563–2570